PhD Student Andy Yang and Professor Stephane Angers

Researchers at the University of Toronto have found a way to better control the preclinical generation of key neurons depleted in Parkinson’s disease, pointing toward a new approach for a disease with no cure and few effective treatments.

The researchers used an antibody to selectively activate a receptor in a molecular signaling pathway to develop dopaminergic neurons. These neurons produce dopamine, a neurotransmitter critical to brain health.

Researchers around the world have been working to coax stem cells to differentiate into dopaminergic neurons, to replace those lost in patients living with Parkinson’s disease. But efforts have been hindered in part by an inability to target specific receptors and areas of the brain.

“We used synthetic antibodies that we had previously developed to target the Wnt signaling pathway,” said Stephane Angers, principal investigator on the study and director of the Donnelly Centre for Cellular and Molecular Biology.

“We can selectively activate this pathway to direct stem cells in the midbrain to develop into neurons by targeting specific receptors in the pathway,” said Angers, who is also a professor in the Leslie Dan Faculty of Pharmacy and the Temerty Faculty of Medicine, and holds the Charles H. Best Chair of Medical Research at U of T. “This activation method has not been explored before.”

Read more at temertymedicine.utoronto.ca

More News

Faces of PharmSci: Cheyenne Matinnia

Clinical Pharmacist and MSc student Cheyenne Matinnia's research focuses on the role of conflict in pharmacy education. While conflict training is well-established in other healthcare fields, it remains largely unexplored for pharmacy students.
Read More

Faces of PharmSci: Stephanie Skalitzky

MSc student Stephanie Skalitzky in the Piquette-Miller lab is exploring whether nutrient supplements can safely prevent inflammation-related issues with placental drug transporters, benefiting maternal and child health.
Read More